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We consider model nonlinear wave equations of the form ut + uu, = 2 ( x ,  t ; u, u,, . . .) 
arising in gasdynamics and other fields, 2 incorporating various linear mechanisms of 
dissipation and dispersion. If 2 includes a thermoviscous dissipation term EU,,, then 
it is generally believed that u(x, t )  will remain single-valued for all t > 0 and all single- 
valued u(x, 0), for any E > 0. The question addressed here is whether, if thermoviscous 
dissipation is excluded from Z, u(x, t )  remains single-valued for all t > 0, or whether 
certain dissipative-dispersive mechanisms (such as relaxation processes) are in 
themselves insufficient to prevent wave overturning. To answer this we propose a 
numerical scheme based on the use of intrinsic coordinates = $(s, t )  to describe the 
waveform at each time. In this paper, the method is described and validated by 
comparisons with the exact solutions for certain Z (2 = 0, 2 = -au, 2 = euTZ). 
These comparisons show that the scheme is free of numerical viscosity effects which 
preclude the solution of the problem by finite-difference or spectral methods applied to 
the signal u(x, t ) ,  that it can reliably distinguish between finite-time overturning and 
merely the formation of steep gradients, and that it can accurately predict the time of 
overturning when it does occur. Having established the validity of the method, 
attention can then be turned to those cases where criteria for overturning have not as 
yet been determined by conventional methods. In Part 2, harmonic wave propagation 
through a relaxing gas is investigated. 

1. Introduction 
In the standard linear theory of sound, waves propagate with constant energy and 

uniform wave speed. However, the finite amplitude of the signal gives rise to nonlinear 
effects which, though weak, act cumulatively and thus may become significant over 
long ranges. Compressive phases of a disturbance travel faster than expansive phases 
and hence wave crests tend to catch up with wave troughs, with the result that 
steepening of the wave occurs. This wave steepening increases the importance of other 
physical processes; the local increase in wave slope means that attenuation or 
dispersion effects that can be ignored for small wave slopes may ultimately become 
significant. If such effects are ignored entirely in the nonlinear theory, wave steepening 
will eventually lead to the wave ‘breaking’, with multi-valued solutions of the wave 
equation being obtained. Although the concept of wave breaking or overturning is 
meaningful only in certain physical situations, such as surface water waves, we use 
these terms synonymously with the onset of multi-valued solutions. In the context of 
acoustic propagation, the actual overturning of waves is clearly physically meaningless, 
pointing instead to a deficiency in the model equation. This paper is concerned with 



586 P .  W. Hammerton and D. G .  Crighton 

investigating the way in which different physical mechanisms act to inhibit wave 
overturning. 

For acoustic propagation through a real medium, where many competing physical 
effects may be present, it becomes important to identify which mechanisms are of 
fundamental importance in determining the shape of the waveform. Straightforward 
comparison of the initial magnitudes of the various physical mechanisms leads to a set 
of dimensionless parameters, such as the inverse acoustic Reynolds number which 
expresses the relative magnitudes of the thermoviscous diffusivity and the nonlinearity. 
These parameters characterize the nominal relative importance of the different physical 
effects, at least before significant wave steepening occurs, and may also suggest a 
scaling for any narrow shock-type region which may arise. However, a more detailed 
analysis is then necessary in order to determine which mechanisms are ultimately 
significant. Thus we envisage a situation where one linear mechanism initially 
dominates all others, and then ask whether the same physical effect remains dominant 
over the whole profile at much greater propagation ranges. For this reason, we examine 
the effect of various such mechanisms in isolation, and consider whether or not 
physically realizable solutions are obtained ; that is, is wave steepening sufficiently 
impeded for wave overturning to be prevented? 

In $2, we give model equations which include various physical effects. Attention is 
restricted to the case of plane wave propagation, in which case the equations can all 
be written in the form 

where Z ( x ,  t; u, u,, . . .) represents a particular linear attenuation and dispersion 
mechanism. As usual, quasi-plane waves (for example, diverging cylindrical or 
spherical waves far from the source) may be included in the class (1.1) through 
appropriate transformations of the dependent and independent variables. Thermo- 
viscous diffusion is believed always to produce only single-valued solutions, but for 
other physical mechanisms, the situation is much less clear-cut, and may depend 
crucially on the relative magnitudes of certain parameters. For propagation through a 
relaxing medium, we demonstrate in Part 2 (Hammerton & Crighton 1993) that the 
existence of physically meaningful solutions, in the absence of diffusivity, depends on 
the characteristic scales of the initial disturbance and on the material parameters of the 
medium. 

If the nominal magnitude of the linear mechanism X is small in comparison with 
that of the nonlinearity, analytical progress can be made by the method of matched 
asymptotic expansions (Crighton & Scott 1979). Essentially, the argument is that the 
lossless solution is obtained by the method of characteristics. Then in the vicinity of 
any spatial region containing large gradients, where the ignored attenuation or 
dispersion terms will have become significant, new scalings are introduced and it is then 
considered as a ‘transition region ’ in which the solution changes rapidly, but 
continuously, between two values. Accordingly, the presence of single- or multi-valued 
solutionsfor such a transition region is the only thing that needs to be investigated. If 
attention can be restricted to travelling wave solutions for this transition, as is 
commonly the case, the problem becomes more amenable to analytic investigation and 
it may be possible to establish a criterion for the existence of single-valued travelling 
wave solutions as a function of the dimensionless parameters and the transition 
amplitude. In this way, using the local transition or ‘shock’ analysis and the lossless 
outer solutions, conditions for which multi-valued solutions arise can be obtained. 
However, if attenuation and dispersion effects become generally comparable with the 
effect of nonlinearity over the whole wave, it is clear that this approach breaks down. 

Ut + uu, = X ( x ,  t; u, uz, . . .), (1.1) 
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In the absence of exact solutions, progress can then only be made using arguments 
based on functional analysis, or by numerical investigations. The first approach is 
taken by Naumkin & Shishmarev (1982, 1983) who consider the phenomenon of wave 
breaking for disturbances governed by Whitham’s equation (Whitham 1967) in which 
the dissipation and dispersion effects are modelled by a general linear convolution 
integral term. Sufficient conditions for the appearance of multi-valued solutions are 
determined, but determination of the necessary criterion is unattainable. On the other 
hand, direct numerical solution of the model equations can never properly determine 
the appearance of multi-valued solutions because of diffusive effects inherent in 
numerical schemes. This paper is concerned with reformulating the physical equation, 
for a general linear mechanism, in such a way that numerical investigation of wave 
overturning becomes possible. 

In order to investigate overturning by numerical means, a very different approach 
must be taken to solving the nonlinear wave equation. Clearly, it is vital to distinguish 
between au/ax becoming infinite in finite time (i.e. the appearance of a multi-valued 
solution and wave overturning) and &/ax becoming very large but remaining finite (as 
in the case of Burgers’ equation with a small coefficient of diffusivity). Direct solution 
of the physical equation by the usual finite-difference or spectral schemes can never 
reveal this difference. As the maximum gradient increases, more and more mesh points 
must be included to retain resolution, but even so, true identification of overturning 
can never be accomplished. In addition, many such numerical schemes inherently 
introduce a small amount of numerical viscosity which limits the growth of gradients, 
so predicting single-valued solutions in all cases. The governing equation must 
therefore be re-expressed in a form which eliminates the singularity caused by infinite 
spatial gradients. A natural way to tackle this is to recast the governing equations into 
characteristic form. For some of the model equations introduced in $2 this 
reformulation proves to be straightforward, but in other cases the problem become 
much more difficult, if not impossible. It is for this reason that we focus attention on 
finding a general method which is applicable to a large class of equations. 

In this paper, what is believed to be a new method of describing wave overturning 
is introduced. By expressing the wave profile in terms of intrinsic coordinates, to be 
defined in due course, all the difficulties associated with the onset of wave overturning 
are circumvented and accurate times for wave breaking can be obtained. In addition, 
use of this method allows the wave profile to be accurately determined, and easily 
visualized, at all points of its evolution. The details of this intrinsic coordinate 
formulation are given in $3.  It appears that analytical progress using this formulation 
is limited, so in 54 the numerical implementation of the method is discussed. In cases 
where exact solutions are available, comparison is made between such solutions and 
the numerical results and found to be extremely favourable. In Part 2, the intrinsic 
coordinate approach is used to investigate nonlinear propagation through relaxing 
media. 

2. Model equations 
A wide range of model equations describing weakly nonlinear acoustic propagation 

through various media is available (see, for example, Crighton 1979). In all the cases 
considered here, the origins of the nonlinearity are the same, namely the convective 
terms in the fluid mass and momentum conservation equations, and the local 
nonlinearity of the pressuredensity relation. Thus the nonlinearity always appears in 
the same way in the equations discussed below and it is the inclusion of different linear 
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mechanisms that gives rise to radically different propagation behaviour. The essential 
nonlinearity for uni-directional flow is represented in the simple (Riemann) wave 
equation 

where U is the disturbance fluid velocity, X the space coordinate, T the time, a, the 
small-signal sound speed and y the adiabatic exponent or an equivalent parameter for 
a condensed fluid. In order to make the analysis of $03 and 4 algebraically clearer, the 
equations to be studied are considered in non-dimensional form with respect to a 
steadily moving frame. Thus (2.1) is written in the form 

U,+[a,+k(y+ 1) U ]  U,  = 0, (2.1) 

Ut  + uu, = 0, 
where x a X -  a,, T and t a T. 

Inclusion of thermoviscous diffusion leads to the familiar Burgers equation (Lighthill 
1956) 

Ut  + UU, = A u , ~ ,  (2.3) 

where A is the non-dimensional diffusivity of sound. Varley & Rogers (1969), on the 
other hand, included viscoelastic damping effects and obtained the model equation 

U t  + uu, = -au. (2.4) 

For propagation of waves through a gas-filled pipe, the cumulative effect of wall 
friction in the Stokes boundary layer(s) leads to 

(Chester 1964), which can be regarded as saying that the wall effect gives rise to a 
fractional derivative (Sugimoto 1989, 1991). 

In many real gases, internal thermodynamic variables of state do not respond 
immediately to changes in conditions caused by a disturbance such as a sound wave 
and so relaxation effects may become significant. If a single relaxation time 
characterizes the non-equilibrium variable, the equation for uni-directional propa- 
gation (Polyakova, Soluyan & Khokhlov 1962; Blythe 1969; Ockendon & Spence 
1969) can be written in the non-dimensional form 

where SZ is proportional to the relaxation time, and is proportional to the difference 
between high-frequency (frozen) and zero-frequency (equilibrium) sound speeds. The 
theory underlying this equation is briefly discussed in Part 2, which is devoted to 
nonlinear propagation through such relaxing gases. 

It can thus be seen that many of the equations of interest in nonlinear acoustics can 
be written in the form 

(2.7) u, + MU, = %(x, t; u, . . .), 
where %(x, t ;  u, . . .) is a term linear in u representing some physical mechanism. For 
any initial disturbance containing forward-facing slopes, the effect of nonlinearity is to 
steepen these slopes, making apparently small linear effects significant in determining 
the overall waveform. In the absence of any linear mechanism (that is & = O), multi- 
valued solutions appear in finite time (see $4) and the wave appears to overturn. Thus 
some previously ignored physical process must in fact become important to ensure 
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physically realistic solutions. From (2.3) and the known general solution of the initial- 
value problem for Burgers’ equation, it is clear that the inclusion of thermoviscosity 
always ensures that single-valued wave solutions are obtained, but it is not immediately 
obvious whether or not the inclusion of relaxation or wall effects without molecular 
diffusivity in the fluid interior is sufficient to prevent wave overturning. Sugimoto 
(1990, 1991) concluded that the wall friction was not always sufficient, and that 
thermoviscosity becomes significant in resolving a Taylor-like viscous sub-shock. For 
the relaxing gas equation (2.6) it is clear that if r= 0 then (2.2) is obtained and 
overturning occurs, and that if Q = 0 (with r =+ 0) then Burgers’ equation (2.3) is 
obtained, giving single-valued solutions at all finite times. Hence for a given initial 
wave profile, the parameter plane (r,SZ) must divide into regions for which the 
waveform remains single-valued and regions for which multi-valued solutions arise (in 
which case thermoviscosity then becomes vital in determining the actual waveform). In 
order to determine these regions of parameter space, a method is formulated in the next 
section which is able to distinguish between the occurrence of actual wave overturning 
in the model equation, and the appearance of small regions where the solution changes 
rapidly but remains single-valued. The remainder of this first paper is concerned with 
validating such an approach. Then in Part 2, the specific problem for relaxing gases, 
discussed above, is analysed in detail. 

3. Intrinsic coordinate formulation 
In the previous section, we introduced a number of model equations for the 

propagation of nonlinear waves including different attenuation and dispersion 
mechanisms and asked whether the inclusion of different effects can produce acceptable 
solutions. In this section we introduce a method for investigating the phenomenon of 
wave overturning by re-expressing the waveform in terms of intrinsic coordinates. 

For a function u(x), the angle $(x) of the tangent to the graph of u(x) can be 
obtained at any point, together with the arclength s(x)  along the curve from some fixed 
point x,, by 

$(x) = tan-’(u,), s(x) = (1 +uz)idx. (3.1) 
I0 

An alternative description of the original curve is then obtained by eliminating x 
between equations (3.1) to give the tangent angle in terms of arclength, $ = $(s). If in 
addition the value of the original function is specified at the fixed point this new 
‘ intrinsic ’ description uniquely defines the original curve, by means of the equations 

u(s) = u(x,) + sin +(s) ds, x(s) = x, + cos $(s) ds. (3.2) 1: 
For any continuous, non-branching curve, $(s) will be single-valued throughout. It is 
for this reason that intrinsic coordinates prove useful in investigating wave overturning ; 
the appearance of a multi-valued wave solution (catastrophe) corresponds simply to 
the absolute value of the ‘intrinsic function’ $(s, t )  exceeding !g~ for some s. 

The nonlinear wave equations of interest (52) can all be written in the form 

U t  + uu, = %(x, t ;  u, u,, . . .), (3.3) 

where % describes some linear process. The particular form of Ytf dictates whether 
overturning will in fact occur. To investigate this possibility, the governing equation is 



590 P. W. Hummerton and D. G .  Crighton 

recast in intrinsic form and to do so we begin by transforming into intrinsic coordinate 
form the equation 

the only restriction placed on F being that there should be no dependence on the time- 
derivatives of u. Choosing the fixed point on the curve as xo = 0, and writing u(0, t )  as 
U(t), equation (3.2) becomes 

u, = F(x, t ;  u,u,, . . .), (3.4) 

Since u, = tan+, it follows that 

$t = cos2 $UXt  = cos2 $C. 

3, + s, 1c.s = cos $A 

(3.6) 

(3.7) 

Re-expressing this in terms of arclength gives 

where a/& denotes differentiation with respect to time with s held constant, and 
As, 7) = F(x, t ;  u, uz, . . .). Then from the definition of arclength, 

st = r" u, u,.( 1 + uz)-i dx = r" uzt sin $ dx 
J o  J o  

= l:& sin $ ds. 

Thus the evolution of $(s,7) is given by 

$, = f,cos$-$s f,sin$ds. S: (3.9) 

This, together with the relation U, =A0,7), is the intrinsic form of (3.4). 
Returning to the general nonlinear wave equation (3.3), the intrinsic form becomes 

$, = -sin2 $- 3, sin $cos $ ds- $, U sec go i- h, cos $- $, 

(3.10a) 
which, by integration by parts, can be written in the alternative form 

$, = -sin'$-$, sin$cos$ds-$, Usec$., S: 
+~shosin$o+(hcos$)s+$, (hcos$)$,ds, (3.10b) s: 

together with the equation governing U(T), 

U, = -Utan$.,+h,. (3.1 1) 

Here the suffix 0 refers to the value of the function at s = 0 and h represents the 
attenuation or dispersion function, but re-expressed in terms of s and 7 (and dependent 
on $(s, 7), $,(s, T )  etc.) rather than x and t (and involving u(x, t ) ,  u,(x, t )  etc.). In terms 
of the notation previously introduced, h(s, 7) = H(x,  t ;  . . .). Thus, given an initial 
waveform u(x, 0), the intrinsic function $(s, 0) and U(0) can be obtained from (3.1) and 
( 3 3 ,  and then (3.10) and (3.11) give $ and U at later times. 
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When considering the evolution of a step transition, the boundary condition is that 
$ + 0 as Is1 + 00, but for a periodic disturbance the conditions are more complicated. 
Evidently, the intrinsic function $(s,7) will be spatially periodic, but with a time- 
dependent period s(~). Setting f = h-u tan $ in (3.8), integration by parts gives 

S, = 1: sin $ cos $ ds+ 1: h, sin $ ds. (3.12) 

Thus the evolution of a periodic disturbance is governed, in intrinsic form, by the set 
of three differential equations (3.10)<3.12). The complicated form of these equations 
suggests that analytical progress is likely to be limited. The problems to be faced can 
be seen simply by considering the initial condition. Putting uo(x) = sinx we find that 
$(s, 0) is given implicitly by 

s = .\/2 E(cos-'[tan $1, l /d2),  (3.13) 

where E(y, k) is the elliptic integral of the second kind (see, for example, Abramowitz 
& Stegun 1965). The other initial conditions then become 

(3.14) 

Progress does not seem much more likely even in the case of step transitions or isolated 
pulses, when essentially only one differential equation must be solved. For this reason, 
the remainder of this paper is concerned with the numerical solution of these equations 
and with the relation between the numerical solutions and the asymptotic and exact 
properties of the equations in the original (x, t )  variables. 

S(T = 0) = .\/2E(27~, 1/.\/2), U(7 = 0) = 0. 

4. Numerical implementation and results 

separately. 
4.1. Periodic disturbances 

For convenience, the three equations to be solved are rewritten here along with the 
boundary conditions ; 

The two classes of disturbances described in the previous section are now considered 

$, = -sin2 $- $s sin $cos $ ds- $s Usec $o + h, cos $- $, 

1 U, = - U tan $, + h,, 

S, = 1; sin @cos $ds+ h, sin $ds, 

(4.1) 
I 

The periodicity of $ with respect to s at fixed time naturally suggests spectral 
evaluation of spatial derivatives. This method of evaluating derivatives is well known, 
though the essential points are repeated here. The most important thing to note is that 
the spatial grid must consist of equally spaced mesh points. 

Consider first a function V(x,  t)  with period X in x. In order to evaluate V ,  by 
spectral methods, V must be known at N equally spaced mesh points given by 

xj = j X / N ,  j = 0,1, .. . , N -  1. (4.2) 
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1 N-1 

?(k, t )  = - C V(xj ,  t )  e-i2xkxj’N, 
N j = o  

where k = - i N +  1, .. . , $N ,  

with inverse transform 
;N 

v(xj, t )  = 2 ?(k, t )  eienkZj”. 
k=-;N+l  

The spatial derivatives immediately follow as 

(4.3) 

(4.4) 

and so on. 
As well as ensuring the periodicity of all the derivatives, the method of calculation 

gives accurate values for each derivative. Of course, if rapid variation of V with x arises 
in the evolution, more spectral components must be used to ensure that this accuracy 
is maintained. The integrals of the periodic functions are evaluated in terms of spectral 
components by taking the transform of the whole integrand. Computation of these 
quantities can be carried out efficiently by the use of a fast Fourier transform (FFT) 
algorithm, with the number of mesh points set to 2” (with n an integer) for optimal 
speed. 

Returning to the current problem, suppose that at time t j ,  S(T~) and U(T~) are known, 
together with @(si,,, rj) ,  at equally spaced mesh points 

(4 * 6) = ( i / N )  S(T~), i = 0, 1, . . . , N ,  

with @ ( s ~ , ~ ,  7,) = @(so,,, TJ Then the first-order time derivatives are obtained from 
(4.1), and @, S and U are advanced in time by forward difference, 

@(si,j,7j+l) = ~ ( ~ i , j , ~ j ) + A ~ @ ? ( ~ i , j , 7 j ) .  (4.7) 

However si , j  =l unless ST(7J = 0, and therefore in general I++(S~ ,~+~ ,T~+~)  must be 
obtained by interpolation from $&, T ~ + ~ ) .  This is accomplished using a standard 
interpolation package based on Aitken’s technique of successive linear interpolation. 
Alternatively, the need for this interpolation can be eliminated by rescaling the spatial 
range to the interval [0,1] with the evolution equations recast in terms of z = s/S. This 
simplification is at the expense of making the set of governing equations more 
complicated, but a reduction in computation time of about 5 % is obtained. 

When implementing this simple numerical scheme, care must be taken in defining the 
spatial resolution and in choosing a suitable time step. A full stability analysis of the 
intricate set of governing equations appears to be impractical. Instead, an ad hoc 
testing procedure was introduced into the numerical evaluation. A spectral component 
was considered if its magnitude, relative to the principal component, was greater than 
5 x Writing the ith spectral components as -&(i), the evolution of these components 
should be accurately predicted if their relative changes in magnitude at each time step 
are small. To comply with this, we adjust the size of the time step AT to satisfy the 
condition 
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FIGURE 1. The evolution of a periodic solution to the inviscid Burgers equation (2.2) using intrinsic 
coordinates (a-c), together with the corresponding physical waveforms (d-f). Exact results for the 
physical waveform obtained by the method of characteristics are also plotted in (d-f), but are 
indistinguishable from the solutions obtained using intrinsic coordinates. (a, d )  t = 0.5; (b, e) t = 1 .O; 
(c,n t = 1.75. 

with the maximum being taken over the set of all significant components. The spatial 
resolution must be chosen such that all the significant spectral components are 
accurately determined. For an initially sinusoidal wave profile, it is found that the 
resulting intrinsic description is a smooth function and so, at first, 64 Fourier modes 
are sufficient to include all the significant components. In Part 2, where this method will 
be applied to equations of physical interest, it is seen that as the wave evolves, the 
intrinsic solution develops structure of a much finer scale. To allow for this, the number 
of mesh points should be doubled as soon as the significant component with the highest 
wavenumber approaches the maximum wavenumber included at that stage. In the 
most extreme cases dealt with in Part 2, 1024 spectral components were considered. 

By adjusting the spatial and temporal step sizes in the fashion outlined above, it is 
hoped that accurate solutions to the model equations of $2 will be obtained. In the rest 
of this section we investigate this accuracy. One simple check on the accuracy of the 
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scheme is obtained by considering the value of J,Scos@ds. This is not explicitly 
conserved in the numerical scheme, but should always be equal to the wave period, 2n. 
In all the cases computed, the error was less than 0.1 %. Apart from this, accuracy can 
be tested by looking at equations of the form (1.1) for which exact solutions are 
available. The validity of the method in dealing with waves which do in fact overturn 
can be demonstrated by considering S = 0, corresponding to nonlinear evolution with 
no attenuation or dispersion. In this case exact solutions can be obtained by the 
method of characteristics, namely 

with z(x, t )  given implicitly by 

which, in the case of an initial sinusoidal wave u&) = sinz, gives multi-valued 
solutions for t > 1. In figure 1 the intrinsic wave function @(s, t )  is plotted before wave 
overturning (figure la),  at the point of overturning (figure lb), and well after 
overturning (figure 1 c), together with the corresponding physical waveforms u(x, t )  
(figure 1d--) deduced from the intrinsic representation. The exact solutions to the 
physical equation, obtained by the method of characteristics, are also plotted on the 
latter set of plots but are indistinguishable from the numerical solution. At time t = 
1.5, corresponding to figure l(c,f) when the wave is fully overturned, the intrinsic 
solution obtained numerically is converted back to physical space, and then compared 
with the exact solution by characteristics. The relative accuracy, expressed as the 
absolute error relative to the wave amplitude, is found to be better than 0.2 YO 
everywhere. At earlier times, prior to wave overturning, a very similar degree of 
accuracy was obtained. 

Before claiming that this numerical scheme is completely valid, one should note from 
figure 1 that the intrinsic solution remains a fairly smooth function of s. To test the 
more demanding case when +(s) becomes less smooth, a small amount of 
thermoviscous dissipation was included. The solution should then remain single-valued 
throughout, with a narrow shock region inserted. The inner detail of the shock region 
should be described well by intrinsic coordinates, but at both extremes of this region 
there is rapid change in the slope of the wave. For a (scaled) diffusivity d = 0.05 (as 
in (2.3)), the solutions obtained via intrinsic coordinates are plotted in figure 2. These 
solutions are plotted at the same times as in figure 1, allowing direct comparison of the 
inviscid and the viscous wave evolution. Figure 2(a-c) shows the intrinsic wave 
function and figure 2 (d-f)  shows the corresponding physical waveforms. Comparing 
figures 1 and 2, it can be seen that with a small coefficient of diffusivity, the waveform 
is virtually unaffected by viscosity until significant wave steepening has occurred. The 
viscous solution obtained numerically in this way can then be compared with the exact 
solution of (2.3) obtained by the Hopf-Cole linearizing transformation. At all times up 
to t = 1.75, the relative errors are found to be less than 0.3 %. As in figure I ,  the exact 
solutions are also plotted at each time in figure 2(d--) ,  and in each case the two curves 
are indistinguishable. 

The main motivation behind the intrinsic coordinate formulation was to investigate 
the conditions under which wave overturning does occur. The accuracy in prediction 
of the time of overturning can be tested by looking at the solution of the Varley-Rogers 
equation (2.4). Solving by the method of characteristics, it can be shown that for a unit- 
amplitude sinusoidal wave, overturning occurs if a < 1, at time 

4 x ,  0 = u&) 

z = x+ tU,(Z), 

t ,  = -ln(l-a)/a. (4.9) 
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FIGURE 2. The evolution of a periodic solution to the Burgers equation (2.3), with A = 0.05, using 
intrinsic coordinates (a-c), together with the corresponding physical waveforms (d-f). Exact results 
for the physical waveform obtained using the Hopf-Cole transformation are also plotted in (d-f), but 
are indistinguishable from the solutions obtained using intrinsic coordinates. (a, d )  t = 0.5; 
(b, e) 1 = 1.0; ( c , f )  t = 1.75. 

Comparing the numerical values of t,, obtained using intrinsic coordinates, with (4.9) 
for various values of a < 1 reveals agreement to at least four significant figures. 

In each of the cases considered so far, the linear mechanism represented by H is 
reasonably simple even when converted to its intrinsic coordinate form. Also, the 
equations have been non-dispersive and hence U, = 0 throughout. In Part 2, accuracy 
checks will be described for propagation through a relaxing medium. Numerical results 
obtained from the intrinsic coordinate formulation will be compared with solutions 
obtained directly from the physical equation (2.6) using a pseudo-spectral scheme. 

4.2. Step transitions 
When considering the evolution of either step transitions or isolated pulses, only one 
differential equation need be solved, since by suitable choice of the fixed point for the 
intrinsic coordinates, U will be constant. The boundaries of the computational domain 



FIGURE 3. The propagation of a step-like transition governed by the inviscid Burgers equation (2.2) 
as calculated using intrinsic coordinates (a, b), together with the resulting evolution of the physical 
waveform (c). Exact results obtained using the method of characteristics are also plotted in (c), but 
are indistinguishable from the results obtained using intrinsic coordinates. (a) t = 1 .O, (b) t = 3.0, (c) 
t = 0, 1.0, 2.0, 3.0. 

are taken well away from the region of interest, so that the boundary conditions 
become $ = 0, $, = 0, etc. A straightforward explicit finite-difference scheme was then 
used, although the pseudo-spectral method outlined at the beginning of this section 
may also be used. Since steadily translating solutions for step transitions are generally 
well known, only a few cases were computed in order to demonstrate the applicability 
of the intrinsic coordinate method. The accuracy of the numerical scheme was tested 
by changing both spatial and temporal step sizes and by comparison with the exact 
solutions for inviscid and viscous propagation. For the numerical investigation, the 
initial profile describing a transition between u = 1 as x + - co and u = 0 as x + co was 
taken to be 

u,(x) = A[ 2 1 - tanh ??)I, (4.10) 

with x* = 4.0, the ‘centre’ of the profile, and h = 0.75, the width of the transition. At 
x = 0, uo x 1 - 1 x and so x = 0 is taken as the fixed point for the intrinsic 
coordinate formulation, with U(t)  kept fixed and equal to unity. 

The inviscid results are given in figure 3. Figure 3(a, b) shows the intrinsic wave 
function at t = 1 and 3 respectively, while figure 3(c) shows the evolution of the 
physical wave profile from t = 0 to 3. Comparing these numerical results with the 
characteristic solution at t = 3, which is after the wave has overturned, the relative 
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FIGURE 4. The propagation of a step-like transition governed by the Burgers equation (2.3), with 
A = 0.05, as calculated using intrinsic coordinates (a, b),  together with the resulting evolution of the 
physical waveform (c). Exact results obtained using the Hopf-Cole transformation are also plotted 
in (c), but are indistinguishable from the results obtained using intrinsic coordinates. 

error is found to be less than 0.2 %, and when plotted together in figure 3(c), the two 
solutions are indistinguishable. In figure 4 results for viscous propagation, governed by 
Burgers’ equation, are plotted at the same times as figure 3. The results can be 
compared with the exact Hopf-Cole solution, revealing relative errors of less than 
0.25 %. If figures 3 and 4 are compared, the effect of viscosity on the intrinsic wave 
function can be seen. At small t ,  l$l is still well away from in and, since the coefficient 
of diffusivity is small ( A  = 0.05), the effect of viscosity is negligible. At t = 1.0, the 
effect of viscosity is still small and the intrinsic functions are very similar, except right 
in the middle of the shock (figures 3a, 4a). At later times when much steeper spatial 
gradients appear, viscosity becomes significant and its presence prevents I ~ J  exceeding 

(i.e. no wave overturning occurs). 
Taken together, these accuracy checks validate the general method and allow sample 

calculations to be undertaken for relaxing gases. In cases where overturning occurs, 
computation becomes very difficult once the wave profile is well past the point of 
overturning, and for more detailed analysis of such situations, a more sophisticated 
numerical scheme would no doubt be desirable. For the physical problems we have in 
mind, however, there is less interest in that aspect than in the question of whether 
overturning does in fact occur in finite time or not, and to answer that question the 
present scheme seems reliable. 
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5. Conclusion 
In this paper we have introduced a new method for investigating the appearance of 

multi-valued solutions in nonlinear wave propagation. Although such solutions are 
physically meaningless in an acoustics context, it is important to be able to identify 
their occurrence as an indication of the inadequacy of the model governing equation. 
Conventional solution methods generally fail as the wave approaches the point of 
overturning, so a new method of describing the wave profile is introduced. The 
essential point is that spectral and difference methods are fundamentally incapable of 
producing triple-valued solutions in the configuration space. Accordingly some 
alternative representation of the waveform is necessary, which effectively unfolds the 
triple-valued wave. By reformulating the whole problem in terms of intrinsic 
coordinates, the objective is achieved, and the wave shape well past the point of 
overturning can be obtained. The validity of such a method is amply demonstrated by 
comparison of numerical solutions obtained in this way with exact solutions. As well 
as being able to cope with wave overturning, numerical implementation of the intrinsic 
coordinate formulation automatically resolves narrow regions of rapid change in the 
wave amplitude, by concentrating mesh points in such regions. However, this does not 
necessarily allow a reduction in the number of mesh points required, since regions of 
rapid change in wave slope must be resolved. One disadvantage of the intrinsic 
coordinate method is that one reasonably simple nonlinear wave equation is converted 
to a much more complicated set of equations, but from a numerical point of view that 
is irrelevant. 

Previous work on wave overturning has been largely in connection with surface 
water waves, when wave breaking is physically meaningful. Longuet-Higgins & 
Cokelet (1976) map the free surface to a complex plane then use intrinsic coordinates; 
however, these do not correspond to the arclength and slope of the physical waveform. 
In a series of papers Meyer (1986~-c) considered the phenomenon of water wave 
breaking on gentle beaches. In the system of equations studied, explicit Riemann 
invariants were obtained, and by using these as independent variables, the well-known 
Euler-Poisson-Darboux (or EPD) equation was obtained. Meyer was able to prove 
several existence and inversion theorems relating solutions of the EPD equation 
(labelled ' apparent solutions '), to the existence, or otherwise, of single-valued solutions 
of the original beach equations. In the class of problems addressed in the current paper, 
no explicit Riemann invariants are in general available and hence it is not clear how 
the analysis of Meyer can be readily modified for these cases. 

Part 2 presents an analysis of the interplay between thermoviscous diffusion, 
relaxation and nonlinearity using the methods described here. For certain relaxation 
parameter values, it is found that some other physical process (such as thermoviscous 
diffusion) must become significant, though only in a very restricted portion of the wave 
form. Using other methods of solution, this subtlety in the wave profile may well be 
overlooked. 
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